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Abstract-A computer model is developed for the 
characterization of Ca2+-induced calcium release (CICR) from 
the sarcoplasmic reticulum (SR) in the rat ventricular cell.  
The fluid compartment model is configured to describe the 
trigger Ca2+ influx (ICa,L) through the membrane of the 
sarcolemma (SL); the diffusion of Ca2+ throughout a small 
cleft space, which is located between the SL and the junctional 
sarcoplasmic reticulum (jSR); and a distribution of five 
ryanodine (Ry)-sensitive Ca2+ release channels called the 
"Ca2+-release complex".  Each Ry-receptor controlled 
channel (or RyR channel) is characterized by a 4-state 
Markovian kinetic scheme.  Two Ca2+ ions are required to 
bind to RyR for channel activation, and one Ca2+ ion is 
required for channel inactivation.   The model provides both 
sufficient Ca2+-release gain and graded release behavior.  The 
complete model is used to simulate the whole-cell Ca2+ 
transient data, evoked in voltage clamp test.  We also studied 
the linear relationship between the rising rate of the Ca2+ 
transients and the peak trigger ICa,L.  The model results 
suggest that this relationship is the indirect result of 2nd-order 
RyR activation dynamics, filtered by fluorescent indicator 
dye.   
Keywords – CICR, Ca2+ graded release, Computer model.     
 

I. INTRODUCTION 
 
    A transient rise in intracellular Ca2+ concentration results 
in contraction of cardiac muscle.  An important 
characteristic of Ca2+ release in cardiac muscle is that it is 
not directly dependent upon voltage depolarization.  
Rather, it is the local Ca2+ concentration around the RyR 
channels of the jSR membrane that causes the opening of 
the RyR channel and subsequent Ca2+ release [1]. The jSR 
stores large amounts of Ca2+ in the resting state.  This 
phenomenon is commonly called "calcium-induced 
calcium release" or CICR [2].  Two fundamental properties 
are related to CICR, namely graded behavior and high gain 
[1].  Graded behavior refers to the experimental fact that 
SR Ca2+ release is proportional to the amplitude of trigger 
ICa,L influx, and high gain relates to the fact that cytosolic 
Ca2+ concentration is much larger when Ca2+ release from 
the jSR occurs, compared to the case that Ca2+ release from 
the jSR is inhibited.     
     

II. MODEL DEVELOPMENT 
 

    Figure 1 shows the structure of the fluid compartment 
model.  We model the diffusion of Ca2+ throughout a 
cylindrical cleft space using partial differential equations 

(PDEs).  Ca2+ enters the cell and diffuses within the cleft 
space and reaches the receptors on the other side of the 
cleft, the cluster of RyR channels distributed on the jSR.  
Ca2+ then accumulates at the "mouths" of the RyRs and 
activates the jSR release channels.  Ca2+ diffuses from the 
cleft space into the bulk myoplasm.  All major Ca2+ buffers 
are considered in the fluid compartment model (not shown 
in the figure), including fluorescent dye and calmodulin 
distributed both in the myoplasm and in the cleft space, 
troponin in the bulk myoplasm, and calsequestrin in the 
jSR.  Active and passive Ca2+ pumps and exchangers, 
which are embedded either in the SL membrane or in the 
SR, are also considered in the model.    
 
 
 
 
 
 
 
 
 
 

           Fig 1.  Illustration of the Ca2+ release model 
 

    Morphological studies indicate that a single DHP-
sensitive ICa,L channel is coupled with multiple RyRs [3].  
We therefore configure one ICa,L channel facing a 
distribution of RyRs on the jSR surface membrane.  
Specifically, the central RyR sensing site is surrounded by 
other 4 identical RyRs in a circular pattern (i.e., 5:1 
RyR/DHPR stoichiometry).  The 4-state gating scheme for 
each RyR channel is illustrated in Fig 2.  The activation 
gate (PO) is opened by the binding of two Ca2+ ions, and 
the inactivation gate (PI) is controlled by the binding of a 
single Ca2+ ion.    
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III. RESULTS 
 
    We have previously modeled the L-type Ca2+ current 
channel [4].  Our current study is focused on the response 
of the RyR channel model to measured ICa,L data.   
 
A. Graded Ca2+ Release 
 
    A simulation of cytosolic Ca2+ transient at the 10 mV 
depolarization level is shown in Fig 3A.  The model 
provides excellent fit to measured calcium transient data at 
this voltage level.  Quantitatively, graded Ca2+ release is 
illustrated in Fig 3B.  From the I-V relationship between 
peak amplitude of ICa,L and depolarization voltage, it is 
clear that peak ICa,L current is largest near 10 mV and 
decreases with more positive depolarizations.  
Correspondingly, peak amplitudes of model-generated 
[Ca2+]i over a wide range of depolarizations 
( mV 6010 ≤≤ V ) show a similar behavior, i.e., maximum 
values of [Ca2+]i decrease from 1.0 Mµ  to 0.25 Mµ , as 
potential is made more positive.  The "mirror-image" 
behavior of [Ca2+]i to the trigger ICa,L in the I-V plots 
confirms the graded Ca2+ release characterized by the 
computer model. 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.  (A). Model simulation (solid) and data (dotted) of cytosolic Ca2+ 
transients at simple depolarization protocol of 10 mV; (B). ICa,L-V and 
[Ca2+]i-V mirrored curves representing graded Ca2+ release.  
 

B. High Gain of Ca2+ Release 
 
    The gain or amplification factor due to CICR can be 
obtained by calculating the ratio of the average integrated 
RyR flux to the average integrated DHPR flux.  
Alternatively, the gain of Ca2+ release by opening of RyRs 
can be computed as the ratio of the peak [Ca2+]i in the 
presence of CICR to the peak [Ca2+]i which resulted from 
the trigger ICa,L alone.  
 
    We used both definitions to examine CICR resulting 
from the opening of RyRs and Ca2+ release from the jSR.  
The first method yields a RyR/DHPR flux ratio of 7.98, 
whereas the second method provides a gain factor of 8.04.  
By either method, the calculated CICR amplitude of 
approximately 8 is sufficient and is similar to that reported 
by Stern [1].  
 
C. Systematic Study of Ca2+ Release 
 
    We have also studied the input-output relationship of the 
Ca2+ release system.  The maximum rate of rise of the 
cytosolic Ca2+ transient and the peak amplitude of ICa,L 
input current are used as global measure of the output and 
input variables of the SR Ca2+ release system respectively 
[5].  Our model predicts a linear relationship as well, but 
only when Ca2+ indicator dyes are present.  However, it is 
not safe to conclude that a single Ca2+ ion is enough to 
activate RyR in terms of such relationship.  In fact, our 
input-output linear relationship was achieved by the RyR 
model of 2nd order Ca2+-binding activation (Fig 2).  Further 
model studies indicate that Ca2+-buffering by the 
fluorescent indicator dye has a very important effect, 
namely, it distorts the quadratic relationship from the RyR 
model and makes the overall dye-mediated Ca2+ transient 
appear linearly related to the input ICa,L.    
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